Bell Ringer

$$3(2x - 8) - 5x = 1/4(16 - 4x)$$

Direct Variation Notes

Direct Variation: when two variable quantities change at a constant rate. An example is y = 20x.

If x (independent variable) increases by 1, then y (dependent variable) increases by 20.

Direct Variation means the ratio of y/x is always the same for each ordered pair.

Direct Variation Model y = mx or y = kx (your book uses this) m = slope or the constant of variation or the constant of proportionality

On a direct variation graph, the line MUST pass through the origin (0,0) or the data is not a direct variation.

Example of a Direct Variation Graph

- what is the constant rate of variation?
- what is a model equation for this graph?

$$\frac{7}{2}$$
, $\frac{14}{4}$, etc
Constant \$3.50/1b
 $y = $3.50 \times$

٠

The equation y = 3x represent the heart rate of a rabbit, where x is the time in seconds and y is the number of heart beats.

rabbit y = 3xcat y = 2x

Does the rabbit or cat have a faster heart rate? Explain.

The rabbit's heart rate is faster than the cat's heart rate because 3 beats is faster than 2 beats.

Write an equation that relates x any y directly when x = 5 and y = 20. (Hint: use y = kx to find k.)

$$y = kx$$
 $y = mx$ $k = \frac{y}{x} = \frac{20}{5} = 4$
 $ao = k5$
 $4 = k$
 $y = 4x$

Find the value of y when x = 10.

The cost of bulk candy varies directly with the weight. At a store, 2 pounds of candy costs \$5.80. Write and solve an equation to find the cost of 5 pounds.

 $y = k \times$ find

$$k = \frac{y}{x} = \frac{5.80}{2} = $2.90$$
 $y = 2.90 \times$
 $y = 2.90(5)$
 $= 14.50

must use the equation method for this chapter

Does the equation y = 25x + 5 model direct variation? Explain.

Graph doesn't go through (0,0)
$$\frac{1}{x} \text{ is not constant}$$

$$\frac{1}{30} \text{ is not constant}$$

$$\frac{1}{30} \text{ is not constant}$$

$$\frac{30}{1} \neq \frac{55}{2}$$

must choose values for "x"; using 1 and 2 are selected. Then solve for y and determine if a constant exists.